Graph neural networks (GNNs) are widely used in many applications. However, their robustness against adversarial attacks is criticized. Prior studies show that using unnoticeable modifications on graph topology or nodal features can significantly reduce the performances of GNNs. It is very challenging to design robust graph neural networks against poisoning attack and several efforts have been taken. Existing work aims at reducing the negative impact from adversarial edges only with the poisoned graph, which is sub-optimal since they fail to discriminate adversarial edges from normal ones. On the other hand, clean graphs from similar domains as the target poisoned graph are usually available in the real world. By perturbing these clean graphs, we create supervised knowledge to train the ability to detect adversarial edges so that the robustness of GNNs is elevated. However, such potential for clean graphs is neglected by existing work. To this end, we investigate a novel problem of improving the robustness of GNNs against poisoning attacks by exploring clean graphs. Specifically, we propose PA-GNN, which relies on a penalized aggregation mechanism that directly restrict the negative impact of adversarial edges by assigning them lower attention coefficients. To optimize PA-GNN for a poisoned graph, we design a meta-optimization algorithm that trains PA-GNN to penalize perturbations using clean graphs and their adversarial counterparts, and transfers such ability to improve the robustness of PA-GNN on the poisoned graph. Experimental results on four real-world datasets demonstrate the robustness of PA-GNN against poisoning attacks on graphs.


翻译:在许多应用中广泛使用了图形神经网络(GNNs) 。 但是,它们对于对抗性攻击的稳健性受到批评。 先前的研究显示, 使用无法察觉的图形表情或节点功能的不可察觉的修改, 能够显著降低GNS的性能。 设计强大的图形神经网络, 防止中毒攻击, 并且已经做出了一些努力, 是非常具有挑战性的。 现有的工作旨在减少对抗性边缘的负面影响, 仅靠有毒的图形, 因为它没有区分正常的对冲边缘。 另一方面, 它们的强势与对抗性攻击相对应力受到批评。 而另一方面, 与目标毒害性图表相似的清洁性图表通常存在于真实世界中。 通过渗透这些清洁性图表, 我们创建了受监督的知识, 训练如何探测敌性神经网络的边缘, 从而提升GNNPG的稳性神经性攻击力。 但是, 现有的工作忽视了这种对清洁性图表的潜力。 我们调查了一个新的问题, 如何通过探索清洁性图表来提高GNNPA的稳性肿瘤对中毒攻击的坚固性, 我们建议PA- GNBalalalalalalalal- 的精确度对等的精确对准性对准性对等数据, 。

6
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
341+阅读 · 2020年1月27日
近期必读的12篇KDD 2019【图神经网络(GNN)】相关论文
专知会员服务
62+阅读 · 2020年1月10日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
6+阅读 · 2019年7月29日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
6+阅读 · 2019年7月29日
Arxiv
24+阅读 · 2018年10月24日
Top
微信扫码咨询专知VIP会员