Whereas cryptography easily arouses attacks by means of encrypting a secret message into a suspicious form, steganography is advantageous for its resilience to attacks by concealing the message in an innocent-looking cover signal. Minimal distortion steganography, one of the mainstream steganography frameworks, embeds messages while minimizing the distortion caused by the modification on the cover elements. Due to the unavailability of the original cover signal for the receiver, message embedding is realized by finding the coset leader of the syndrome function of steganographic codes migrated from channel coding, which is complex and has limited performance. Fortunately, deep generative models and the robust semantic of generated data make it possible for the receiver to perfectly reproduce the cover signal from the stego signal. With this advantage, we propose cover-reproducible steganography where the source coding, e.g., arithmetic coding, serves as the steganographic code. Specifically, the decoding process of arithmetic coding is used for message embedding and its encoding process is regarded as message extraction. Taking text-to-speech and text-to-image synthesis tasks as two examples, we illustrate the feasibility of cover-reproducible steganography. Steganalysis experiments and theoretical analysis are conducted to demonstrate that the proposed methods outperform the existing methods in most cases.
翻译:加密很容易通过将秘密信息加密成一种可疑的形式而引起攻击, 而书写法则有利于其抵御攻击, 因为它将信息隐藏在一个无辜的表面封面信号中。 最微小的扭曲色素学, 主流色谱学框架之一, 将信息嵌入, 并最大限度地减少因修改封面元素而导致的扭曲。 由于接收器无法获得原始封面信号, 信息嵌入的方法是通过找到从频道编码中迁移的精密编码综合功能的共集导体来实现的, 它复杂且性能有限的。 幸运的是, 深层基因模型和生成的数据的精密性能使得接收器能够完美复制由星信号提供的封面信号。 有了这一优势, 我们建议了隐蔽的色谱学, 在源编码( 例如算术) 中, 算术编码编码的解码过程被用于信息嵌入, 其编码过程被视为信息提取过程。 幸运的是, 深层的基因模型模型模型和生成数据的精度使接收器得以完美复制。 将文本到最精确的模型分析中, 将现有的分析方法作为两个例子。 。 Stregraphregration- pregration- prographisgraphy