We introduce an unfitted finite element method with Lagrange-multipliers to study an Eulerian time stepping scheme for moving domain problems applied to a model problem where the domain motion is implicit to the problem. We consider a parabolic partial differential equation (PDE) in the bulk domain, and the domain motion is described by an ordinary differential equation (ODE), coupled to the bulk partial differential equation through the transfer of forces at the moving interface. The discretisation is based on an unfitted finite element discretisation on a time-independent mesh. The method-of-lines time discretisation is enabled by an implicit extension of the bulk solution through additional stabilisation, as introduced by Lehrenfeld \& Olshanskii (ESAIM: M2AN, 53:585--614, 2019). The analysis of the coupled problem relies on the Lagrange-multiplier formulation, the fact that the Lagrange-multiplier solution is equal to the normal stress at the interface and that the motion of the interface is given through rigid body motion. This paper covers the complete stability analysis of the method and an error estimate in the energy norm. This includes the dynamic error in the domain motion resulting from the discretised ODE and the forces from the discretised PDE. To the best of our knowledge this is the first error analysis of this type of coupled moving domain problem in a fully Eulerian framework. Numerical examples illustrate the theoretical results.
翻译:我们引入了一种不合适的有限元素方法,用Lagrange-倍增器来研究一个 Eulelian 时间阶梯式方法,用于将域的问题移到一个模型问题中,而域动议隐含着域动议的问题。我们考虑在散装域中采用抛离部分差分方程(PDE),而域动议则用普通的差分方程描述(ODE),加上通过移动界面的引力转移产生的大宗部分差分方程(ODE),这种离散是基于在时间独立的网格上对不合适的有限元素的分解。线性时间推移方法是通过额外的稳定化来隐含地扩大大宗解决办法的延伸,正如Lehrenfeld ⁇ Olshandskii (Olshanskii) (ESAIM: M2AN, 53:585--614, 2019) 所介绍的那样。对相加问题的分析依赖于Lagrange-倍化方位方程式的配方程式,即Lagrange-倍化方程式的解决方案相当于接口的正常压力,而界面的动作运动是硬体运动运动运动运动运动运动运动运动的动作。本文涵盖了模型中的方法的全面稳定性分析和对域域内离差法式的模型的模型的模型的模型的模型的精确分析,包括这一动态模型的理论模型的模型的模型的模型的模型的模型的模型的模型。