In this paper, we investigate the many-valued version of coalgebraic modal logic through predicate lifting approach. Coalgebras, understood as generic transition systems, can serve as semantic structures for various kinds of modal logics. A well-known result in coalgebraic modal logic is that its completeness can be determined at the one-step level. We generalize the result to the finitely many-valued case by using the canonical model construction method. We prove the result for coalgebraic modal logics based on three different many-valued algebraic structures, including the finitely-valued {\L}ukasiewicz algebra, the commutative integral Full-Lambek algebra (FL$_{ew}$-algebra) expanded with canonical constants and Baaz Delta, and the FL$_{ew}$-algebra expanded with valuation operations. In addition, we also prove the finite model property of the many-valued coalgebraic modal logic by using the filtration technique.
翻译:在本文中,我们通过上游升起方法调查了许多价值众多的煤眼模型逻辑版本。煤眼作为通用过渡系统,可以作为各种模式逻辑的语义结构。煤眼模型逻辑的一个众所周知的结果是,其完整性可以在一步一级确定。我们通过使用光学模型建设方法,将结果归纳为价值有限的多值案例。我们证明了基于三种不同价值不同的代数结构的煤眼模型逻辑的结果,包括定值的 ~L}ukasiewicz 代数结构、与运河常数和Baaz Delta相扩展的通性整体-Lambek代数(FL$+ ⁇ w}$-algebra),以及与估值操作相扩展的FL$ ⁇ w}$-algebra。此外,我们还通过过滤技术,证明了多种价值的煤眼模型逻辑的有限模型属性。