We consider space-time tracking optimal control problems for linear para\-bo\-lic initial boundary value problems that are given in the space-time cylinder $Q = \Omega \times (0,T)$, and that are controlled by the right-hand side $z_\varrho$ from the Bochner space $L^2(0,T;H^{-1}(\Omega))$. So it is natural to replace the usual $L^2(Q)$ norm regularization by the energy regularization in the $L^2(0,T;H^{-1}(\Omega))$ norm. We derive a priori estimates for the error $\|\widetilde{u}_{\varrho h} - \bar{u}\|_{L^2(Q)}$ between the computed state $\widetilde{u}_{\varrho h}$ and the desired state $\bar{u}$ in terms of the regularization parameter $\varrho$ and the space-time finite element mesh-size $h$, and depending on the regularity of the desired state $\bar{u}$. These estimates lead to the optimal choice $\varrho = h^2$. The approximate state $\widetilde{u}_{\varrho h}$ is computed by means of a space-time finite element method using piecewise linear and continuous basis functions on completely unstructured simplicial meshes for $Q$. The theoretical results are quantitatively illustrated by a series of numerical examples in two and three space dimensions.
翻译:我们考虑对线性 para2,T;H ⁇ -1}(Omega) 初始边界值问题进行空间时间跟踪的最佳控制问题,这些问题出现在时空气瓶中 $Q =\ Omega\ time(0,T) 美元,由右侧控制 $z ⁇ varrho$,来自博克纳空间 $2,0,T;H ⁇ -1}(Omega) 美元。因此,在正常参数 $\2 (Q) 和 时空限要素 mash-h) 中,用能源正规化取代通常的 $L2 (Q) 美元(Omega) 标准值规范。我们计算出一个错误的预估 $+++\\\\ varrho} -\\ bar{u\ {L2 (Q} 美元 美元 由右侧侧边边边边方计算 美元计算结果 和 以连续的平面计算法 r= 美元 平面计算结果 以双平方平方平方平方平方平方平方平方计算法 。