The Scholarly Hybrid Question Answering over Linked Data (QALD) Challenge at the International Semantic Web Conference (ISWC) 2024 focuses on Question Answering (QA) over diverse scholarly sources: DBLP, SemOpenAlex, and Wikipedia-based texts. This paper describes a methodology that combines SPARQL queries, divide and conquer algorithms, and a pre-trained extractive question answering model. It starts with SPARQL queries to gather data, then applies divide and conquer to manage various question types and sources, and uses the model to handle personal author questions. The approach, evaluated with Exact Match and F-score metrics, shows promise for improving QA accuracy and efficiency in scholarly contexts.
翻译:暂无翻译