Over the last decade, researchers have extensively explored the vulnerabilities of Android malware detectors to adversarial examples through the development of evasion attacks; however, the practicality of these attacks in real-world scenarios remains arguable. The majority of studies have assumed attackers know the details of the target classifiers used for malware detection, while in reality, malicious actors have limited access to the target classifiers. This paper introduces EvadeDroid, a practical decision-based adversarial attack designed to effectively evade black-box Android malware detectors in real-world scenarios. In addition to generating real-world adversarial malware, the proposed evasion attack can also preserve the functionality of the original malware applications (apps). EvadeDroid constructs a collection of functionality-preserving transformations derived from benign donors that share opcode-level similarity with malware apps by leveraging an n-gram-based approach. These transformations are then used to morph malware instances into benign ones via an iterative and incremental manipulation strategy. The proposed manipulation technique is a novel, query-efficient optimization algorithm that can find and inject optimal sequences of transformations into malware apps. Our empirical evaluation demonstrates the efficacy of EvadeDroid under soft- and hard-label attacks. Furthermore, EvadeDroid exhibits the capability to generate real-world adversarial examples that can effectively evade a wide range of black-box ML-based malware detectors with minimal query requirements. Finally, we show that the proposed problem-space adversarial attack is able to preserve its stealthiness against five popular commercial antiviruses, thus demonstrating its feasibility in the real world.
翻译:暂无翻译