Semantic segmentation of aerial imagery is an important tool for mapping and earth observation. However, supervised deep learning models for segmentation rely on large amounts of high-quality labelled data, which is labour-intensive and time-consuming to generate. To address this, we propose a new approach for using unmanned aerial vehicles (UAVs) to autonomously collect useful data for model training. We exploit a Bayesian approach to estimate model uncertainty in semantic segmentation. During a mission, the semantic predictions and model uncertainty are used as input for terrain mapping. A key aspect of our pipeline is to link the mapped model uncertainty to a robotic planning objective based on active learning. This enables us to adaptively guide a UAV to gather the most informative terrain images to be labelled by a human for model training. Our experimental evaluation on real-world data shows the benefit of using our informative planning approach in comparison to static coverage paths in terms of maximising model performance and reducing labelling efforts.
翻译:航空图像的语义分解是测绘和地球观测的一个重要工具,然而,受监督的分解深度学习模式依赖于大量高品质的标签数据,这些数据耗费大量人力、耗费时间才能生成。为了解决这一问题,我们提议了使用无人驾驶飞行器(无人驾驶飞行器)自主收集有用数据用于示范培训的新方法。我们利用巴耶斯方法来估计语义分解模型的不确定性。在执行任务期间,语义预测和模型不确定性被用作地形绘图的投入。我们管道的一个关键方面是将所绘制的模型不确定性与基于积极学习的机器人规划目标联系起来。这使我们能够适应性地指导无人驾驶飞行器收集由人标记的最丰富的地形图象,用于示范培训。我们对现实世界数据的实验性评价表明,在将模型性能最大化和减少标签努力方面,利用我们的信息化规划方法来比较静态覆盖路径的好处。