In this letter, we propose a novel LiDAR-Inertial-Visual sensor fusion framework termed R3LIVE, which takes advantage of measurement of LiDAR, inertial, and visual sensors to achieve robust and accurate state estimation. R3LIVE is contained of two subsystems, the LiDAR-inertial odometry (LIO) and visual-inertial odometry (VIO). The LIO subsystem (FAST-LIO) takes advantage of the measurement from LiDAR and inertial sensors and builds the geometry structure of (i.e. the position of 3D points) global maps. The VIO subsystem utilizes the data of visual-inertial sensors and renders the map's texture (i.e. the color of 3D points). More specifically, the VIO subsystem fuses the visual data directly and effectively by minimizing the frame-to-map photometric error. The developed system R3LIVE is developed based on our previous work R2LIVE, with careful architecture design and implementation. Experiment results show that the resultant system achieves more robustness and higher accuracy in state estimation than current counterparts (see our attached video). R3LIVE is a versatile and well-engineered system toward various possible applications, which can not only serve as a SLAM system for real-time robotic applications, but can also reconstruct the dense, precise, RGB-colored 3D maps for applications like surveying and mapping. Moreover, to make R3LIVE more extensible, we develop a series of offline utilities for reconstructing and texturing meshes, which further minimizes the gap between R3LIVE and various of 3D applications such as simulators, video games and etc (see our demos video). To share our findings and make contributions to the community, we open source R3LIVE on our Github, including all of our codes, software utilities, and the mechanical design of our device.


翻译:在此信里,我们提出一个名为R3LIVE的新型LIDAR-Intertial-Visual传感器框架,它利用L3LIVE的测量、惯性传感器和视觉传感器实现稳健和准确的状态估计。R3LIVE包含两个子系统,即LiDAR(LIO)和视觉-内光学测量(VIO)。LIO子系统(FAST-LIO)利用LIDAR和惯性传感器的测量,并构建全球地图(即3D点的位置)的地理序列结构。VIO子系统利用视觉-内光学传感器、惯性传感器和视觉传感器的数据来实现稳健和准确的状态估计。 VIO子系统通过将视觉数据直接和有效结合,将框架-内光度测量误差误差误差(FST-LIO)利用了我们先前的工作R2LVIVE、仔细的架构设计和实施。实验结果显示结果显示,结果系统可以实现更坚固和更高精确的SL3的SAR3的系统, 也能够更精确地对我们的图像进行精确的 R3和不断的图像的系统进行精确的对比。

0
下载
关闭预览

相关内容

状态估计根据可获取的量测数据估算动态系统内部状态的方法。对系统的输入和输出进行量测而得到的数据只能反映系统的外部特性,而系统的动态规律需要用内部(通常无法直接测量)状态变量来描述。因此状态估计对于了解和控制一个系统具有重要意义。
基于视觉的三维重建关键技术研究综述
专知会员服务
163+阅读 · 2020年5月1日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Arxiv
6+阅读 · 2021年11月12日
LIMO: Lidar-Monocular Visual Odometry
Arxiv
3+阅读 · 2018年7月19日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关VIP内容
基于视觉的三维重建关键技术研究综述
专知会员服务
163+阅读 · 2020年5月1日
相关资讯
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Top
微信扫码咨询专知VIP会员