Latent class growth analysis is a popular approach to identify underlying subpopulations. Several implementations, such as LCGA (Mplus), Proc Traj (SAS) and lcmm (R) are specially designed for this purpose. Motivated by data collection of psychological instruments over time in a large North American cancer centre, we compare these implementations using various simulated Edmonton Symptom Assessment System revised (ESAS-r) scores, an ordinal outcome from 0 to 10, as well as the real data consisting of more than 20,000 patients. We found that Mplus and lcmm lead to high correct classification rate, but Proc Traj over estimated the number of classes and failed to converge. While Mplus is computationally faster than lcmm, it does not allow more than 10 levels. We therefore suggest first analyzing data on the ordinal scale using lcmm. If computational time becomes an issue, then one can group the scores into categories and implement them in Mplus.
翻译:隐性类增长分析是一种查明潜在亚群的流行方法。 一些执行, 如 LCGA (Mplus)、Proc Traj (SAS) 和 lcmm (R) 等, 专门为此专门设计。 受在北美大型癌症中心长期收集心理工具的数据的驱动, 我们使用各种模拟的Edmonton Symptom 评估系统(ESAS-r) 的分数、 0至 10 的交点结果以及由 20 000 多名患者组成的真实数据对这些执行进行比较。 我们发现, Mplus 和 lcmm 导致高的正确分类率, 但是 Proc Traj 估计了类数, 但没有达到趋同。 虽然 Mplus 计算速度快于 lcmm, 但允许的等级不超过 10 。 因此, 我们建议首先使用 lcmm 来分析星级比例的数据。 如果计算时间成为一个问题, 那么人们就可以将分数分组并在 Mplus 中执行 。