Natural language generation (NLG) benchmarks provide an important avenue to measure progress and develop better NLG systems. Unfortunately, the lack of publicly available NLG benchmarks for low-resource languages poses a challenging barrier for building NLG systems that work well for languages with limited amounts of data. Here we introduce IndoNLG, the first benchmark to measure natural language generation (NLG) progress in three low-resource -- yet widely spoken -- languages of Indonesia: Indonesian, Javanese, and Sundanese. Altogether, these languages are spoken by more than 100 million native speakers, and hence constitute an important use case of NLG systems today. Concretely, IndoNLG covers six tasks: summarization, question answering, chit-chat, and three different pairs of machine translation (MT) tasks. We collate a clean pretraining corpus of Indonesian, Sundanese, and Javanese datasets, Indo4B-Plus, which is used to pretrain our models: IndoBART and IndoGPT. We show that IndoBART and IndoGPT achieve competitive performance on all tasks -- despite using only one-fifth the parameters of a larger multilingual model, mBART-LARGE (Liu et al., 2020). This finding emphasizes the importance of pretraining on closely related, local languages to achieve more efficient learning and faster inference for very low-resource languages like Javanese and Sundanese.
翻译:自然语言生成基准(NLG)是衡量进展和发展更好的NLG系统的重要途径。不幸的是,缺乏公开的NLG低资源语言基准对建设NLG系统构成挑战性障碍,这些系统对数据数量有限的语言来说运作良好。这里我们引入了IndoNLG,这是衡量印度尼西亚三种低资源语言(虽然广泛使用)中自然语言生成进展的第一个基准:印度尼西亚语、爪哇尼塞语和孙丹语。这些语言共有1亿以上的土著语言,因此成为当今NLG系统的一个重要使用案例。具体地说,IndoBART和IndoGPT包含六项任务:合成、问答、奇特查特语和三对机器翻译(MT)任务。我们整理了印度尼西亚语、孙丹斯语和爪哇内斯语(NLGGGGG)三种低资源生成进展的清洁前成套材料(Indo4B-Plus),用来预设我们的模型:IndoBART和IndoGPT。我们显示,IndoBART和InGPT具有更高竞争力的参数,尽管在2020年的多语言中只进行一项相关的学习,但我们在2020年多语言中更深入的研究中也强调了了所有任务中实现了。