A myriad of recent literary works has leveraged generative adversarial networks (GANs) to spawn unseen evasion samples. The purpose is to annex the generated data with the original train set for adversarial training to improve the detection performance of machine learning (ML) classifiers. The quality of generating adversarial samples relies on the adequacy of training data samples. However, in low data regimes like medical diagnostic imaging and cybersecurity, the anomaly samples are scarce in number. This paper proposes a novel GAN design called Evasion Generative Adversarial Network (EVAGAN) that is more suitable for low data regime problems that use oversampling for detection improvement of ML classifiers. EVAGAN not only can generate evasion samples, but its discriminator can act as an evasion aware classifier. We have considered Auxiliary Classifier GAN (ACGAN) as a benchmark to evaluate the performance of EVAGAN on cybersecurity (ISCX-2014, CIC-2017 and CIC2018) botnet and computer vision (MNIST) datasets. We demonstrate that EVAGAN outperforms ACGAN for unbalanced datasets with respect to detection performance, training stability and time complexity. EVAGAN's generator quickly learns to generate the low sample class and hardens its discriminator simultaneously. In contrast to ML classifiers that require security hardening after being adversarially trained by GAN generated data, EVAGAN renders it needless. The experimental analysis proves that EVAGAN is an efficient evasion hardened model for low data regimes for the selected cybersecurity and computer vision datasets. Code will be available at https://github.com/rhr407/EVAGAN.


翻译:最近大量文学作品利用了基因对抗网络(GANs)来生成逃避的样本。目的是将生成的数据与最初的对抗性训练列列列列的原始列车合在一起,以提高机器学习(ML)分类人员的检测性能。生成对抗性抽样的质量取决于培训数据样本是否充足。然而,在医疗诊断成像和网络安全等低数据系统中,异常抽样数量很少。本文件建议采用一种新型的GAN设计,称为Evasion General Adversarial 网络(EVAGAN),它更适合低数据系统问题,而低数据系统使用过度抽样来改进ML分类者的检测性能。EVAGAN不仅可以生成逃避性样,而且其导师也可以作为规避性能分析者。我们认为ARCAAN(ACANAN)作为评估EVAN(IS-2014、CIC-2017和CIC2018模型)网络和计算机观察系统(MNIST)的性能。我们表明,EVAAN比对不平衡的AGGANAN(精细化数据分析)的精确度分析需要快速的系统。AVAGAG的稳定性和经训练后, 将使得GAGARC级数据变压的精细化数据变的精制成。

0
下载
关闭预览

相关内容

生成对抗网络 (Generative Adversarial Network, GAN) 是一类神经网络,通过轮流训练判别器 (Discriminator) 和生成器 (Generator),令其相互对抗,来从复杂概率分布中采样,例如生成图片、文字、语音等。GAN 最初由 Ian Goodfellow 提出,原论文见 Generative Adversarial Networks

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
46+阅读 · 2021年6月12日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员