Causal inference for extreme events has many potential applications in fields such as medicine, climate science and finance. We study the extremal quantile treatment effect of a binary treatment on a continuous, heavy-tailed outcome. Existing methods are limited to the case where the quantile of interest is within the range of the observations. For applications in risk assessment, however, the most relevant cases relate to extremal quantiles that go beyond the data range. We introduce an estimator of the extremal quantile treatment effect that relies on asymptotic tail approximations and uses a new causal Hill estimator for the extreme value indices of potential outcome distributions. We establish asymptotic normality of the estimators even in the setting of extremal quantiles, and we propose a consistent variance estimator to achieve valid statistical inference. In simulation studies we illustrate the advantages of our methodology over competitors, and we apply it to a real data set.
翻译:极端事件的因果推断在医学、气候科学和金融等领域有许多潜在用途。我们研究二元治疗对连续、繁琐的结果产生的极端四分位处理效应。现有方法仅限于在观察范围以内利益之分的情况。然而,在风险评估的应用方面,最相关的案例涉及超出数据范围的极端四分位数。我们引入了极限四分位处理效应的估测器,该方位近似无症状,并使用新的因果山丘估计器来计算潜在结果分布的极端价值指数。我们建立估计者无症状的正常性,甚至在确定极端四分位数时也是如此,我们建议一个前后一致的差异估计器,以得出有效的统计推理。在模拟研究中,我们展示了我们的方法相对于竞争者的好处,我们将其应用到一个真实的数据组中。