Image restoration of snow scenes in severe weather is a difficult task. Snow images have complex degradations and are cluttered over clean images, changing the distribution of clean images. The previous methods based on CNNs are challenging to remove perfectly in restoring snow scenes due to their local inductive biases' lack of a specific global modeling ability. In this paper, we apply the vision transformer to the task of snow removal from a single image. Specifically, we propose a parallel network architecture split along the channel, performing local feature refinement and global information modeling separately. We utilize a channel shuffle operation to combine their respective strengths to enhance network performance. Second, we propose the MSP module, which utilizes multi-scale avgpool to aggregate information of different sizes and simultaneously performs multi-scale projection self-attention on multi-head self-attention to improve the representation ability of the model under different scale degradations. Finally, we design a lightweight and simple local capture module, which can refine the local capture capability of the model. In the experimental part, we conduct extensive experiments to demonstrate the superiority of our method. We compared the previous snow removal methods on three snow scene datasets. The experimental results show that our method surpasses the state-of-the-art methods with fewer parameters and computation. We achieve substantial growth by 1.99dB and SSIM 0.03 on the CSD test dataset. On the SRRS and Snow100K datasets, we also increased PSNR by 2.47dB and 1.62dB compared with the Transweather approach and improved by 0.03 in SSIM. In the visual comparison section, our MSP-Former also achieves better visual effects than existing methods, proving the usability of our method.


翻译:在恶劣天气中, 雪景图像的恢复是一项艰巨的任务。 雪色图像具有复杂的退化性, 并且被清洁图像拼凑在一起, 从而改变清洁图像的分布。 先前基于CNN 的方法具有挑战性, 要完全清除恢复雪色, 因为本地的感应偏差缺乏特定的全球建模能力。 在本文中, 我们应用视觉变压器从一个图像中清除雪的工作。 具体地说, 我们建议沿着频道分割一个平行的网络结构, 进行本地地貌改进和全球信息建模。 我们使用一个频道打拼操作, 来结合它们各自的强项来提高网络的性能。 其次, 我们提议MSP 模块, 利用多尺度的气流源组合来汇总不同大小的雪景场景场景场景信息, 同时对多头自我意识进行多尺度的投影自我意识, 以提高模型在不同规模变形的表象能力。 最后, 我们设计一个轻度和简单的本地捕捉捉捉模模块, 可以改进模型的本地捕捉捉摸能力。 在实验部分, 我们进行广泛的实验, 展示方法, 我们的方法, 我们的雪色变雪色变色变色图图比 我们的SDRVB 3的SW- 的SD

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2019年11月14日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员