The work considers the $N$-server distributed computing scenario with $K$ users requesting functions that are linearly-decomposable over an arbitrary basis of $L$ real (potentially non-linear) subfunctions. In our problem, the aim is for each user to receive their function outputs, allowing for reduced reconstruction error (distortion) $\epsilon$, reduced computing cost ($\gamma$; the fraction of subfunctions each server must compute), and reduced communication cost ($\delta$; the fraction of users each server must connect to). For any given set of $K$ requested functions -- which is here represented by a coefficient matrix $\mathbf {F} \in \mathbb{R}^{K \times L}$ -- our problem is made equivalent to the open problem of sparse matrix factorization that seeks -- for a given parameter $T$, representing the number of shots for each server -- to minimize the reconstruction distortion $\frac{1}{KL}\|\mathbf {F} - \mathbf{D}\mathbf{E}\|^2_{F}$ overall $\delta$-sparse and $\gamma$-sparse matrices $\mathbf{D}\in \mathbb{R}^{K \times NT}$ and $\mathbf{E} \in \mathbb{R}^{NT \times L}$. With these matrices respectively defining which servers compute each subfunction, and which users connect to each server, we here design our $\mathbf{D},\mathbf{E}$ by designing tessellated-based and SVD-based fixed support matrix factorization methods that first split $\mathbf{F}$ into properly sized and carefully positioned submatrices, which we then approximate and then decompose into properly designed submatrices of $\mathbf{D}$ and $\mathbf{E}$.
翻译:暂无翻译