Given a large dataset of many tuples, it is hard for users to pick out their preferred tuples. Thus, the preference query problem, which is to find the most preferred tuples from a dataset, is widely discussed in the database area. In this problem, a utility function is given by the user to evaluate to what extent the user prefers a tuple. However, considering a dataset consisting of N tuples, the existing algorithms need O(N) time to answer a query, or need O(N) time for a cold start to answer a query. The reason is that in a classical computer, a linear time is needed to evaluate the utilities by the utility function for N tuples. In this paper, we discuss the Quantum Preference Query (QPQ) problem, where the dataset is given in a quantum memory, and we use a quantum computer to return the answers. Due to quantum parallelism, the quantum algorithm can theoretically perform better than their classical competitors. We discuss this problem in different kinds of input and output. In the QPQ problem, the input can be a number k or a threshold theta. Given k, the problem is to return k tuples with the highest utilities. Given theta, the problem is to return all the tuples with utilities higher than theta. Also, in QPQ problem, the output can be classical (i.e., a list of tuples) or quantum (i.e., a superposition in quantum bits). We proposed four quantum algorithms to solve the problems in the above four scenarios. We analyze the number of memory accesses needed for each quantum algorithm, which shows that the proposed quantum algorithms are at least quadratically faster than their classical competitors. In our experiments, we show that to answer a QPQ problem, the quantum algorithms achieve up to 1000x improvement in number of memory accesses than their classical competitors, which proved that QPQ problem could be a future direction of the study of preference query problems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2021年5月3日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2021年5月3日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员