Graph structural information such as topologies or connectivities provides valuable guidance for graph convolutional networks (GCNs) to learn nodes' representations. Existing GCN models that capture nodes' structural information weight in- and out-neighbors equally or differentiate in- and out-neighbors globally without considering nodes' local topologies. We observe that in- and out-neighbors contribute differently for nodes with different local topologies. To explore the directional structural information for different nodes, we propose a GCN model with weighted structural features, named WGCN. WGCN first captures nodes' structural fingerprints via a direction and degree aware Random Walk with Restart algorithm, where the walk is guided by both edge direction and nodes' in- and out-degrees. Then, the interactions between nodes' structural fingerprints are used as the weighted node structural features. To further capture nodes' high-order dependencies and graph geometry, WGCN embeds graphs into a latent space to obtain nodes' latent neighbors and geometrical relationships. Based on nodes' geometrical relationships in the latent space, WGCN differentiates latent, in-, and out-neighbors with an attention-based geometrical aggregation. Experiments on transductive node classification tasks show that WGCN outperforms the baseline models consistently by up to 17.07% in terms of accuracy on five benchmark datasets.


翻译:图表结构信息,如表层或连接等,为图形革命网络(GCNs)提供宝贵的指导,以学习节点的表示方式。现有的GCN模型,在不考虑节点的局部地形结构特征的情况下,平等地记录节点结构信息在邻内和邻外结构权重,或者在不考虑节点当地地形结构信息的情况下,在全球区分邻内和邻外结构。我们发现,邻内和邻外结构信息对具有不同地方地形的节点有不同的作用。为探索不同节点的方向结构信息,我们提议了一个具有加权结构特征的GCN模型,名为WGCN.WGCNCNC首次通过一个有意识的方向和程度的随机行走与重新启动算算法在方向和程度上采集节点结构信息,在不考虑节点当地地形结构特征的情况下,将节点结构指纹之间的相互作用用作加权节点结构特征。为了进一步捕获节点的高度依赖性和图形的几何结构测量,WGCN内嵌入了潜藏空间,以获得节点的近地点和CN对称的正数关系。基于节点方向定位的轨道定位模型,在定位的轨道定位模型中,将潜行距轨道上,将定位轨道定位定位的轨道上显示空间的轨道定位轨道定位矩阵的轨道上,将轨道上显示,将潜行距值的轨道定位矩阵的轨道定位矩阵的轨道上显示。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年5月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络三剑客:GCN、GAT与GraphSAGE
PaperWeekly
65+阅读 · 2020年2月27日
一文读懂图卷积GCN
AINLP
4+阅读 · 2019年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
15+阅读 · 2019年4月4日
VIP会员
相关资讯
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络三剑客:GCN、GAT与GraphSAGE
PaperWeekly
65+阅读 · 2020年2月27日
一文读懂图卷积GCN
AINLP
4+阅读 · 2019年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员