Knowledge graph embedding has been an active research topic for knowledge base completion, with progressive improvement from the initial TransE, TransH, DistMult et al to the current state-of-the-art ConvE. ConvE uses 2D convolution over embeddings and multiple layers of nonlinear features to model knowledge graphs. The model can be efficiently trained and scalable to large knowledge graphs. However, there is no structure enforcement in the embedding space of ConvE. The recent graph convolutional network (GCN) provides another way of learning graph node embedding by successfully utilizing graph connectivity structure. In this work, we propose a novel end-to-end Structure-Aware Convolutional Network (SACN) that takes the benefit of GCN and ConvE together. SACN consists of an encoder of a weighted graph convolutional network (WGCN), and a decoder of a convolutional network called Conv-TransE. WGCN utilizes knowledge graph node structure, node attributes and edge relation types. It has learnable weights that adapt the amount of information from neighbors used in local aggregation, leading to more accurate embeddings of graph nodes. Node attributes in the graph are represented as additional nodes in the WGCN. The decoder Conv-TransE enables the state-of-the-art ConvE to be translational between entities and relations while keeps the same link prediction performance as ConvE. We demonstrate the effectiveness of the proposed SACN on standard FB15k-237 and WN18RR datasets, and it gives about 10% relative improvement over the state-of-the-art ConvE in terms of HITS@1, HITS@3 and HITS@10.
翻译:知识图嵌入一直是知识库完成的一个积极研究主题,从最初的 TransE、 TransH、 DistMult et al 到当前最先进的ConvE。 ConvE 将嵌入和多层非线性功能的2D演进用于模拟知识图。该模型可以高效地培训,并可以向大型知识图进行伸缩。但是,ConvE 的嵌入空间没有执行结构。最近的图形革命网络(GCN)提供了另一种学习图形节点嵌入的方法,它成功地利用了图形连通结构。在这项工作中,我们提出了一个新的端到端结构-Awar Convolution网络(SACN),它利用了W-end-终端结构-Award Convilal 网络(SARC) 的节点嵌嵌入了目前最先进的 HCN-33 。 SACN 将GNLE 和CRE 的数值转换成更精确的GUI值, 用于当地GULE 和CRO 的缩成更精确的GO值。