Multi-marginal optimal transport enables one to compare multiple probability measures, which increasingly finds application in multi-task learning problems. One practical limitation of multi-marginal transport is computational scalability in the number of measures, samples and dimensionality. In this work, we propose a multi-marginal optimal transport paradigm based on random one-dimensional projections, whose (generalized) distance we term the sliced multi-marginal Wasserstein distance. To construct this distance, we introduce a characterization of the one-dimensional multi-marginal Kantorovich problem and use it to highlight a number of properties of the sliced multi-marginal Wasserstein distance. In particular, we show that (i) the sliced multi-marginal Wasserstein distance is a (generalized) metric that induces the same topology as the standard Wasserstein distance, (ii) it admits a dimension-free sample complexity, (iii) it is tightly connected with the problem of barycentric averaging under the sliced-Wasserstein metric. We conclude by illustrating the sliced multi-marginal Wasserstein on multi-task density estimation and multi-dynamics reinforcement learning problems.
翻译:多边最佳运输方式使得人们能够比较多重概率度量,而这种概率度量在多任务学习问题中日益得到应用。多边运输的一个实际局限性是测量、样本和维度数量的计算可缩放性。在这项工作中,我们建议了一个多边最佳运输模式,其基础是随机的一维预测,其(一般化的)距离是我们给切片多边瓦西里斯坦距离定的。为了构建这一距离,我们引入了单维多边Kantorovich问题的特点,并用它突出切片多边瓦色斯坦距离的一些特性。特别是,我们表明(一)切片多边瓦色斯坦距离是一种(一般化的)衡量标准瓦塞斯坦距离引导出相同的表层学,(二)它承认一个没有维度的样本复杂性。(三)它与切片瓦瑟斯坦标准下的巴氏中心平均问题密切相关。我们通过说明切片多边际瓦西斯坦度估算和多塔氏度密度学习问题来得出。