简单的GAN评估指标的Tensorflow实现
Inception score
Frechet-Inception distance
Kernel-Inception distance
Name - 名称 | Description - 描述 | Performance score - 评分 |
Inception score | KL-Divergence between conditional and marginal label distributions over generated data KL-散度上条件和边缘标签分布在生成数据上的差异。 |
Higher is better 评分越高越好 |
Frechet-Inception distance | Wasserstein-2 distance between multi-variate Gaussians fitted to data embedded into a feature space 多变量高斯函数之间的Wasserstein-2距离,适用于嵌入到特征空间中的数据。 |
Lower is better. 评分越低越好 |
Kernel-Inception distance | Measures the dissimilarity between two probability distributions Pr and Pg using samples drawn independently from each distribution 使用独立于每个分布绘制的样本测量两个概率分布Pr和Pg之间的差异。 |
Lower is better. 评分越低越好 |
├── real_source
├── aaa.png
├── bbb.jpg
├── real_target
├── ccc.png
├── ddd.jpg
├── fake
├── ccc_fake.png
├── ddd_fake.jpg
├── main.py
├── inception_score.py
└── frechet_kernel_Inception_distance.py
> pyth main.py
Pros and Cons of GAN Evaluation Measures - GAN评价方法的优缺点
Inception score
Frechet-Inception score
Junho Kim
点击阅读原文,查看更多内容