In this paper we study supervised learning tasks on the space of probability measures. We approach this problem by embedding the space of probability measures into $L^2$ spaces using the optimal transport framework. In the embedding spaces, regular machine learning techniques are used to achieve linear separability. This idea has proved successful in applications and when the classes to be separated are generated by shifts and scalings of a fixed measure. This paper extends the class of elementary transformations suitable for the framework to families of shearings, describing conditions under which two classes of sheared distributions can be linearly separated. We furthermore give necessary bounds on the transformations to achieve a pre-specified separation level, and show how multiple embeddings can be used to allow for larger families of transformations. We demonstrate our results on image classification tasks.
翻译:在本文中,我们研究了关于概率计量空间的监督下学习任务。我们通过使用最佳运输框架将概率计量的空间嵌入2美元空间来解决这一问题。在嵌入空间中,使用定期机器学习技术实现线性分离。这一想法在应用中和在拟分离的班级通过固定计量的轮班和缩放产生时证明是成功的。本文将适合框架基础转换的班级扩大到剪裁家庭,描述了两类剪裁分布可以线性分离的条件。我们进一步为转换设定了必要的界限,以达到预先规定的分离水平,并展示如何利用多类嵌入来扩大变异的组合。我们在图像分类任务上展示了我们的成果。