To help meet the increasing need for dynamic vision sensor (DVS) event camera data, this paper proposes the v2e toolbox that generates realistic synthetic DVS events from intensity frames. It also clarifies incorrect claims about DVS motion blur and latency characteristics in recent literature. Unlike other toolboxes, v2e includes pixel-level Gaussian event threshold mismatch, finite intensity-dependent bandwidth, and intensity-dependent noise. Realistic DVS events are useful in training networks for uncontrolled lighting conditions. The use of v2e synthetic events is demonstrated in two experiments. The first experiment is object recognition with N-Caltech 101 dataset. Results show that pretraining on various v2e lighting conditions improves generalization when transferred on real DVS data for a ResNet model. The second experiment shows that for night driving, a car detector trained with v2e events shows an average accuracy improvement of 40% compared to the YOLOv3 trained on intensity frames.
翻译:为了帮助满足对动态视觉传感器(DVS)事件摄像数据日益增长的需求,本文件提议了V2工具箱,该工具箱从强度框架生成现实的合成DVS事件。它还澄清了最近文献中对DVS运动模糊和潜伏特性的不正确主张。与其他工具箱不同, v2e 包括像素级高斯事件临界值不匹配、有限强度依赖带宽和强度依赖噪音。现实的DVS事件有助于为不受控制照明条件的培训网络。在两次实验中演示了 v2e合成事件。第一次实验是用N-Caltech 101数据集进行对象识别。结果显示,在为ResNet模型传输真实DVS数据时,对各种 v2e照明条件进行预先培训会改善一般化。第二个实验显示,在夜间驾驶方面,受过V2事件训练的汽车探测器显示,与在强度框架上受训的YOLOv3相比,平均精度提高了40%。