We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements $P_k$ and $P_m, (k<m)$. In particular, we show practical cases where finite element $P_{k}$ gives more accurate results than finite element $P_{m}$. This illustrates the theoretical probabilistic framework we recently derived in order to evaluate the actual accuracy. This also highlights the importance of the extra caution required when comparing two numerical methods, since the classical results of error estimates concerns only the asymptotic convergence rate.
翻译:我们建议对一种概率方法进行数字验证,以估计两个拉格朗定点要素(P_k美元)和美元P_m(k<m)美元)之间的相对准确性。特别是,我们展示了一些实际案例,其中限定点要素(P_k}美元)产生的结果比限定点要素($P%m}美元)更准确。这说明了我们最近为评价实际准确性而得出的理论概率框架。这也突出了在比较两种数值方法时需要额外谨慎的重要性,因为典型的误差估计结果只涉及无症状的趋同率。