We study an estimator with a convex formulation for recovery of low-rank matrices from rank-one projections. Using initial estimates of the factors of the target $d_1\times d_2$ matrix of rank-$r$, the estimator admits a practical subgradient method operating in a space of dimension $r(d_1+d_2)$. This property makes the estimator significantly more scalable than the convex estimators based on lifting and semidefinite programming. Furthermore, we present a streamlined analysis for exact recovery under the real Gaussian measurement model, as well as the partially derandomized measurement model by using the spherical $t$-design. We show that under both models the estimator succeeds, with high probability, if the number of measurements exceeds $r^2 (d_1+d_2)$ up to some logarithmic factors. This sample complexity improves on the existing results for nonconvex iterative algorithms.
翻译:我们研究的是用于从一级预测中恢复低位矩阵的测算器。根据对目标因数的初步估计,Septator接受一种实用的次梯度方法,在维度空间中运行$r(d_1+d_2)美元。这一属性使测算器比基于升降和半确定性编程的测算器大得多。此外,我们提出了对实际高斯测算模型下精确恢复的简化分析,以及通过使用球价美元设计进行部分取消的测算模型。我们表明,在两种模型下,如果测量数量超过$2(d_1+d_2)美元,则测算器的成功率很高,达到某些对数系数。这种抽样复杂性比非调控重算算法的现有结果要好一些。