A common concern in observational studies focuses on properly evaluating the causal effect, which usually refers to the average treatment effect or the average treatment effect on the treated. In this paper, we propose a data preprocessing method, the Kernel-distance-based covariate balancing, for observational studies with binary treatments. This proposed method yields a set of unit weights for the treatment and control groups, respectively, such that the reweighted covariate distributions can satisfy a set of pre-specified balance conditions. This preprocessing methodology can effectively reduce confounding bias of subsequent estimation of causal effects. We demonstrate the implementation and performance of Kernel-distance-based covariate balancing with Monte Carlo simulation experiments and a real data analysis.
翻译:在观察研究中,一个共同的关注点是适当评价因果关系,通常是指平均处理效果或对被治疗者的平均处理效果;在本文件中,我们提议采用一种数据预处理方法,即以内核-远距离共变法平衡法,用于二元处理的观察研究;这一拟议方法为治疗和控制组分别产生一套单位加权法,使经过重新加权的共变法分布法能够满足一套预先规定的平衡条件;这一预处理方法可以有效地减少对随后对因果关系的估计的混乱的偏差;我们证明以内核-远距离共变法与蒙特卡洛模拟试验和实际数据分析的平衡。