In practical computations, the (preconditioned) conjugate gradient (P)CG method is the iterative method of choice for solving systems of linear algebraic equations $Ax=b$ with a real symmetric positive definite matrix $A$. During the iterations it is important to monitor the quality of the approximate solution $x_k$ so that the process could be stopped whenever $x_k$ is accurate enough. One of the most relevant quantities for monitoring the quality of $x_k$ is the squared $A$-norm of the error vector $x-x_k$. This quantity cannot be easily evaluated, however, it can be estimated. Many of the existing estimation techniques are inspired by the view of CG as a procedure for approximating a certain Riemann--Stieltjes integral. The most natural technique is based on the Gauss quadrature approximation and provides a lower bound on the quantity of interest. The bound can be cheaply evaluated using terms that have to be computed anyway in the forthcoming CG iterations. If the squared $A$-norm of the error vector decreases rapidly, then the lower bound represents a tight estimate. In this paper we suggest a heuristic strategy aiming to answer the question of how many forthcoming CG iterations are needed to get an estimate with the prescribed accuracy. Numerical experiments demonstrate that the suggested strategy is efficient and robust.


翻译:在实际计算中,(有条件的)共振梯度(P)CG方法是用于解决线性代数方程系统的迭代选择方法,即用对称正正确定基质$A美元,Ax=b美元;在迭代期间,重要的是监测近似溶液的质量,$x_k美元,以便在美元足够准确时停止这一过程。监测美元质量的最相关数量之一是误差矢量 $x-x_k$的平方美元-norm。然而,这一数量无法轻易评估,但可以估算。许多现有的估算技术都受到CG的观点的启发,认为CG是某种近似正正正正正正方方正方方方程的准准准准准准准准准准准准准准准准。最自然的技术以高方格四方位近率为基近似准准准准准准准准准准,对利息数量有较低的约束度。使用在即将到的CG值的误准正方方位计算条件可以廉价地评估。如果方言方美元正正正方位代表了即将到的硬方位的硬方位策略,那么的硬方位的硬方位的轴的策略将显示的硬方位的C。

0
下载
关闭预览

相关内容

还在修改博士论文?这份《博士论文写作技巧》为你指南
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2018年6月7日
Arxiv
0+阅读 · 2021年3月7日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年5月24日
VIP会员
Top
微信扫码咨询专知VIP会员