For a $d$-dimensional random vector $X$, let $p_{n, X}$ be the probability that the convex hull of $n$ i.i.d. copies of $X$ contains a given point $x$. We provide several sharp inequalities regarding $p_{n, X}$ and $N_X$, which denotes the smallest $n$ with $p_{n, X} \ge 1/2$. As a main result, we derive a totally general inequality which states $1/2 \le \alpha_X N_X \le 16d$, where $\alpha_X$ (a.k.a. the Tukey depth) is the infimum of the probability that $X$ is contained in a fixed closed halfspace including the point $x$. We also provide some applications of our results, one of which gives a moment-based bound of $N_X$ via the Berry-Esseen type estimate.
翻译:对于一维随机矢量 $X美元,让我们的美元,让美元,X美元 的美元是一美元一元一元一元的圆形船体含有一美元一元一元的概率。我们提供了美元、X美元美元和美元一元一元一元一元的几处尖锐的不平等,这表示美元最小的一元为美元,X美元一元一元二元。主要结果是,我们产生了一种完全普遍的不平等,它表明1美元/2\le ALpha_X N_X\le 16d$,其中美元(a.k.a.a.tukey深度)是美元(a.k.a.tokey develop)包含在固定封闭的半块空间(包括点x美元)的概率的最小值。我们还提供了我们结果的一些应用,其中之一是通过Berry-Esesein型的估算,以瞬间为单位的一美元为X美元。