We explore the complexity of nucleolus computation in b-matching games on bipartite graphs. We show that computing the nucleolus of a simple b-matching game is NP-hard even on bipartite graphs of maximum degree 7. We complement this with partial positive results in the special case where b values are bounded by 2. In particular, we describe an efficient algorithm when a constant number of vertices satisfy b(v) = 2 as well as an efficient algorithm for computing the non-simple b-matching nucleolus when b = 2.
翻译:我们探索了核核糖核酸计算在双边图案的B对齐游戏中的复杂性。 我们显示,计算一个简单的B对齐游戏的核核糖核素是硬的,即使用最大度为7的双边图案计算也是硬的。 在b值受b值约束的特殊情况下,我们用部分肯定结果来补充这一点。 我们特别描述了当恒定数的脊椎满足b(v)=2时的有效算法,以及当b=2时计算不简单的B对齐核糖核素的有效算法。