In this work, we study the $k$-means cost function. Given a dataset $X \subseteq \mathbb{R}^d$ and an integer $k$, the goal of the Euclidean $k$-means problem is to find a set of $k$ centers $C \subseteq \mathbb{R}^d$ such that $\Phi(C, X) \equiv \sum_{x \in X} \min_{c \in C} ||x - c||^2$ is minimized. Let $\Delta(X,k) \equiv \min_{C \subseteq \mathbb{R}^d} \Phi(C, X)$ denote the cost of the optimal $k$-means solution. For any dataset $X$, $\Delta(X,k)$ decreases as $k$ increases. In this work, we try to understand this behaviour more precisely. For any dataset $X \subseteq \mathbb{R}^d$, integer $k \geq 1$, and a precision parameter $\varepsilon > 0$, let $L(X, k, \varepsilon)$ denote the smallest integer such that $\Delta(X, L(X, k, \varepsilon)) \leq \varepsilon \cdot \Delta(X,k)$. We show upper and lower bounds on this quantity. Our techniques generalize for the metric $k$-median problem in arbitrary metric spaces and we give bounds in terms of the doubling dimension of the metric. Finally, we observe that for any dataset $X$, we can compute a set $S$ of size $O \left(L(X, k, \varepsilon/c) \right)$ using $D^2$-sampling such that $\Phi(S,X) \leq \varepsilon \cdot \Delta(X,k)$ for some fixed constant $c$. We also discuss some applications of our bounds.


翻译:在这项工作中,我们研究美元单位成本函数。 如果一个数据集 $X / subseteq $\ mathb{R ⁇ d$ 和整金美元, Euclidean $k$- means 问题的目标是找到一套美元中心 $C\ subseteq\ mathb{R ⁇ d$, 以美元( C, X)\ = sucxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx$ 和整金美元, 以美元(xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学中,代价函数,又叫损失函数或成本函数,它是将一个或多个变量的事件阈值映射到直观地表示与该事件。 一个优化问题试图最小化损失函数。 目标函数是损失函数或其负值,在这种情况下它将被最大化。
专知会员服务
76+阅读 · 2021年3月16日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年7月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年7月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员