Semantic parsing solves knowledge base (KB) question answering (KBQA) by composing a KB query, which generally involves node extraction (NE) and graph composition (GC) to detect and connect related nodes in a query. Despite the strong causal effects between NE and GC, previous works fail to directly model such causalities in their pipeline, hindering the learning of subtask correlations. Also, the sequence-generation process for GC in previous works induces ambiguity and exposure bias, which further harms accuracy. In this work, we formalize semantic parsing into two stages. In the first stage (graph structure generation), we propose a causal-enhanced table-filler to overcome the issues in sequence-modelling and to learn the internal causalities. In the second stage (relation extraction), an efficient beam-search algorithm is presented to scale complex queries on large-scale KBs. Experiments on LC-QuAD 1.0 indicate that our method surpasses previous state-of-the-arts by a large margin (17%) while remaining time and space efficiency. The code and models are available at https://github.com/AOZMH/Crake.
翻译:语义分解解解解答( KB QQAA) 解答知识基础( KB) 解答( KBQA ) 的解答( KBQA ), 方法是组成一个 KB 查询, 通常涉及节点提取 (NE) 和 图形组成 (GC ), 以探测和连接一个查询中的相关节点。 尽管NE 和 GC 之间有着强烈的因果关系, 先前的工程未能直接模拟管道中的这种因果关系, 从而阻碍对亚task 相关性的学习。 另外, 以前的工程中GC 的序列生成过程导致模糊和接触偏差, 从而进一步损害准确性。 在这项工作中, 我们正式将语义分解分为两个阶段。 在第一阶段( 结构生成 ), 我们提出一个因果强化的表填充器, 以克服序列建模中的问题, 并学习内部因果关系。 在第二阶段( 提取), 高效的梁研究算算法可以对大型 KBs. 进行复杂的查询。 LC- QAD1.0 实验表明, 我们的方法比先前的状态要大幅度( 17 % ) 和空间效率都可用 。