A challenging case in web search and question answering are count queries, such as \textit{"number of songs by John Lennon"}. Prior methods merely answer these with a single, and sometimes puzzling number or return a ranked list of text snippets with different numbers. This paper proposes a methodology for answering count queries with inference, contextualization and explanatory evidence. Unlike previous systems, our method infers final answers from multiple observations, supports semantic qualifiers for the counts, and provides evidence by enumerating representative instances. Experiments with a wide variety of queries show the benefits of our method. To promote further research on this underexplored topic, we release an annotated dataset of 5k queries with 200k relevant text spans.
翻译:在网上搜索和回答问题时,一个具有挑战性的案例是计数查询,例如 \ textit{ "John Lennon的歌曲数"。 先前的方法只是用一个单数回答,有时是模糊数字,或者返回一个有不同数字的排位的文本片子清单。 本文提出了一个用推理、 背景化和解释性证据回答计数查询的方法。 与以往的系统不同, 我们的方法从多重观察中推断出最后答案, 支持对计数的语义限定词, 并通过列举有代表性的例子提供证据。 与各种查询的实验显示了我们的方法的好处。 为了推动关于这个未得到充分探讨的专题的进一步研究, 我们发行了一个由5千个查询组成的附加说明数据集, 有200千个相关文本的宽度。