We introduce the Conic Blackwell Algorithm$^+$ (CBA$^+$) regret minimizer, a new parameter- and scale-free regret minimizer for general convex sets. CBA$^+$ is based on Blackwell approachability and attains $O(\sqrt{T})$ regret. We show how to efficiently instantiate CBA$^+$ for many decision sets of interest, including the simplex, $\ell_{p}$ norm balls, and ellipsoidal confidence regions in the simplex. Based on CBA$^+$, we introduce SP-CBA$^+$, a new parameter-free algorithm for solving convex-concave saddle-point problems, which achieves a $O(1/\sqrt{T})$ ergodic rate of convergence. In our simulations, we demonstrate the wide applicability of SP-CBA$^+$ on several standard saddle-point problems, including matrix games, extensive-form games, distributionally robust logistic regression, and Markov decision processes. In each setting, SP-CBA$^+$ achieves state-of-the-art numerical performance, and outperforms classical methods, without the need for any choice of step sizes or other algorithmic parameters.
翻译:我们引入了Conic Blackwell ALgorithm $ 美元( CBA$ $ $ $ ) 最低遗憾( CBA$ $ $ 美元 ) 。 我们引入了一个新的无参数和无比例最低遗憾( 美元 ) 。 CBA$ 美元 以黑市可接近性为基础, 并达到了美元( ( sqrt{T} $ $ 美元 ) 。 我们展示了如何高效地即时地将CBA$ 美元 用于许多决策组合, 包括简单x、 $ / ell ⁇ 美元 标准球和简单x 的自线信任区。 根据CBA$ 美元, 我们引入了 SP- CBA$ 美元, 解决 convex- comcave 轮椅问题的新无参数算算算法 。 在每次设定时, SP- CBA$ $ 美元 达到不需任何州或州级级级的公式的公式和标准级数级化的运算方法。