Few-shot named entity recognition (NER) targets generalizing to unseen labels and/or domains with few labeled examples. Existing metric learning methods compute token-level similarities between query and support sets, but are not able to fully incorporate label semantics into modeling. To address this issue, we propose a simple method to largely improve metric learning for NER: 1) multiple prompt schemas are designed to enhance label semantics; 2) we propose a novel architecture to effectively combine multiple prompt-based representations. Empirically, our method achieves new state-of-the-art (SOTA) results under 16 of the 18 considered settings, substantially outperforming the previous SOTA by an average of 8.84% and a maximum of 34.51% in relative gains of micro F1. Our code is available at https://github.com/AChen-qaq/ProML.
翻译:现有的衡量学习方法计算了查询和支持组之间的象征性相似之处,但无法将标签语义充分纳入模型。 为解决这一问题,我们提议了一个简单的方法,以大大改进NER的计量学习:1) 设计了多种快速的模型,以加强标签语义;2) 我们提出了一个新的结构,以有效地将多种快速表达方式结合起来。我们的方法在所考虑的18个环境中的16个环境中取得了新的最新艺术成果,大大优于以前的SOTA,平均为8.84%,而相对于微F的收益则最多为34.51%。 我们的代码可在https://github.com/AChen-qq/ProML上查阅。