The rapid advancement in self-supervised representation learning has highlighted its potential to leverage unlabeled data for learning rich visual representations. However, the existing techniques, particularly those employing different augmentations of the same image, often rely on a limited set of simple transformations that cannot fully capture variations in the real world. This constrains the diversity and quality of samples, which leads to sub-optimal representations. In this paper, we introduce a framework that enriches the self-supervised learning (SSL) paradigm by utilizing generative models to produce semantically consistent image augmentations. By directly conditioning generative models on a source image, our method enables the generation of diverse augmentations while maintaining the semantics of the source image, thus offering a richer set of data for SSL. Our extensive experimental results on various joint-embedding SSL techniques demonstrate that our framework significantly enhances the quality of learned visual representations by up to 10\% Top-1 accuracy in downstream tasks. This research demonstrates that incorporating generative models into the joint-embedding SSL workflow opens new avenues for exploring the potential of synthetic data. This development paves the way for more robust and versatile representation learning techniques.
翻译:暂无翻译