There is mounting evidence that existing neural network models, in particular the very popular sequence-to-sequence architecture, struggle with compositional generalization, i.e., the ability to systematically generalize to unseen compositions of seen components. In this paper we demonstrate that one of the reasons hindering compositional generalization relates to the representations being entangled. We propose an extension to sequence-to-sequence models which allows us to learn disentangled representations by adaptively re-encoding (at each time step) the source input. Specifically, we condition the source representations on the newly decoded target context which makes it easier for the encoder to exploit specialized information for each prediction rather than capturing all source information in a single forward pass. Experimental results on semantic parsing and machine translation empirically show that our proposal yields more disentangled representations and better generalization.


翻译:越来越多的证据表明,现有的神经网络模型,特别是非常流行的序列到序列结构,与构成性一般化挣扎,即能够系统地向看不见的已见组件的构成加以概括。在本文件中,我们证明,妨碍构成性概括化的原因之一是表达方式被纠缠在一起。我们建议扩展顺序到序列模型,使我们能够通过适应性再编码(每一步)源的输入来了解分解的表达方式。具体地说,我们把源的表达方式设置在新解码的目标环境上,使编码者更容易为每一项预测利用专门信息,而不是在一个前方通道中捕捉所有源信息。语义解析和机器翻译实验结果显示,我们的提案产生更加分解和更好的概括化。

0
下载
关闭预览

相关内容

【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
65+阅读 · 2021年11月15日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Graph Transformer for Graph-to-Sequence Learning
Arxiv
4+阅读 · 2019年11月30日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员