We present a finitary version of Moss' coalgebraic logic for $T$-coalgebras, where $T$ is a locally monotone endofunctor of the category of posets and monotone maps. The logic uses a single cover modality whose arity is given by the least finitary subfunctor of the dual of the coalgebra functor $T_\omega^\partial$, and the semantics of the modality is given by relation lifting. For the semantics to work, $T$ is required to preserve exact squares. For the finitary setting to work, $T_\omega^\partial$ is required to preserve finite intersections. We develop a notion of a base for subobjects of $T_\omega X$. This in particular allows us to talk about the finite poset of subformulas for a given formula. The notion of a base is introduced generally for a category equipped with a suitable factorisation system. We prove that the resulting logic has the Hennessy-Milner property for the notion of similarity based on the notion of relation lifting. We define a sequent proof system for the logic, and prove its completeness.
翻译:我们展示了Moss 的燃煤gebaric 逻辑的原始版本 $T$-coalgebras, $T$是当地表面和单色图类的单一单一端端点。 逻辑使用一种单一的覆盖模式, 其纯度由燃煤热源真菌真菌双倍的最小端点子端点给予, 模式的语义通过关系提升给出。 语义到工作, 需要$T$来保存准确的方形。 对于工作, 需要$T$T$tt$tolton 。 对于有鳍的设置, 需要$T ⁇ omega_party$来保存一定的交叉点。 我们为一个子端点制定了一个基点概念, 基点为$T ⁇ omega X$。 这特别使我们能够谈论给定公式子形的定点构成。 基点概念一般是为装备适当保理系统的类别所引入的。 我们证明, 由此得出的逻辑有 Hency- Milner 的类似性属性, 概念是基于对关联性概念的验证。 我们定义了它的完整性。 我们定义了一种逻辑。