项目名称: 强磁场下层状钙钛矿结构Fe4+基氧化物的制备和物性研究

项目编号: No.U1532152

项目类型: 联合基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 宋文海

作者单位: 中国科学院合肥物质科学研究院

项目金额: 50万元

中文摘要: Fe4+与Mn3+具有相同的电子构型3d4,而且Fe4+基氧化物和Mn3+基氧化物都属于强关联电子体系,但是它们却表现出迥然不同的物理性质。为了理解这一差异,尤其是Fe4+基氧化物中所出现的电荷歧化效应的本质,本项目拟选取Ruddlesden-Popper结构Fe4+基氧化物Sr3Fe2O7为研究对象,通过Fe位掺杂替代轨道半径更加拓展的4d和5d元素,认识从3d到4d和5d氧化物,随着电子关联强度U/W的变化而导致的体系电子结构和量子相变行为的演变规律,进一步增强对d电子态的理解;通过强磁场下材料制备和强磁场下物性研究,建立磁场—微结构—电磁性质变化的关联,阐明强磁场对体系的自旋、电荷、轨道等多重量子序及量子相变的影响规律和作用机制,探索和发现强磁场下Sr3Fe2O7及其掺杂体系中可能存在的新物理现象和效应,进而揭示Sr3Fe2O7中电荷歧化的起因及Sr3Fe2O7中反铁磁转变的本质。

中文关键词: 强关联电子体系;过渡金属氧化物

英文摘要: Although Fe4+ and Mn3+ has the same electronic configuration 3d4, and Fe4+ and Mn3+ -based oxides both belong to strongly correlated electronic systems, they exhibit different physical properties. To understand this difference, especially the nature of the charge disproportionation effect in Fe4+ -based oxides, we select Sr3Fe2O7 with Ruddlesden-Popper structure as the object of study. By doping 4d and 5d elements with more spatially extended oribitals at Fe site, we intend to recognized the evolution of electronic structure and quantum phase transiton upon the variation in U/W covering 3d to 4d and 5d oxides, and further enhance the understanding of the d electron states. We aim at establishing the correlation between magnetic field, microstructure, and the electronic and magnetic properties and elucidate the influence and mechanism of high magnetic field on the quantum phase transition and the multiple quantum order such as the spin, charge, and orbital, through the prepation of materials and the study of properties under high magnetic field. Moreover, we may explore and discover new physical phenomena and effects in Sr3Fe2O7 and the doped samples under high magnetic field. We may also reveal the origin of charge disproportionation and shed light on the nature of antiferromagnetic transtion in Sr3Fe2O7.

英文关键词: strongly correlated electron system;transition metal oxides

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
34+阅读 · 2021年6月24日
专知会员服务
49+阅读 · 2021年6月2日
专知会员服务
31+阅读 · 2021年5月7日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
15+阅读 · 2021年2月7日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
3+阅读 · 2022年4月19日
Arxiv
2+阅读 · 2022年4月19日
小贴士
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
34+阅读 · 2021年6月24日
专知会员服务
49+阅读 · 2021年6月2日
专知会员服务
31+阅读 · 2021年5月7日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
15+阅读 · 2021年2月7日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员