We present a succinct data structure for permutation graphs, and their superclass of circular permutation graphs, i.e., data structures using optimal space up to lower order terms. Unlike concurrent work on circle graphs (Acan et al. 2022), our data structure also supports distance and shortest-path queries, as well as adjacency and neighborhood queries, all in optimal time. We present in particular the first succinct exact distance oracle for (circular) permutation graphs. A second succinct data structure also supports degree queries in time independent of the neighborhood's size at the expense of an $O(\log n/\log \log n)$-factor overhead in all running times. Furthermore, we develop a succinct data structure for the class of bipartite permutation graphs. We demonstrate how to run algorithms directly over our succinct representations for several problems on permutation graphs: Clique, Coloring, Independent Set, Hamiltonian Cycle, All-Pair Shortest Paths, and others. Finally, we initiate the study of semi-distributed graph representations; a concept that smoothly interpolates between distributed (labeling schemes) and centralized (standard data structures). We show how to turn some of our data structures into semi-distributed representations by storing only $O(n)$ bits of additional global information, circumventing the lower bound on distance labeling schemes for permutation graphs.


翻译:我们为变换图提供了简洁的数据结构,以及圆形变换图的超级分类,即使用最优空间到更低顺序条件的数据结构。不同于同时在圆形图上的工作(Acan等人,2022年),我们的数据结构还支持了距离和最短路径查询,以及相邻和邻区查询,所有时间都是最理想的。我们特别为(圆形)变换图提供了第一个简洁的准确距离或触角图。第二个简洁的数据结构还支持在独立于邻居大小的时间进行程度查询,而在所有运行时间以美元(log n/log n/log n) 美元为基点管理。此外,我们为双面变换图的类别开发了一个简洁的数据结构。我们展示了如何直接在简洁的表达中进行算法,解决了(criquencion, Colorning,Setripleian Cirects) 和其他问题。最后,我们开始研究半分解的平面图图图图图式图式图式图式图式(Bitledal-dalationalationalation n n nn) roadalationalational dalationalationalation grational grational 结构,我们之间如何在标准化数据结构之间分配数据结构之间,我们只是化了一种结构。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
54+阅读 · 2020年11月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员