We present a succinct data structure for permutation graphs, and their superclass of circular permutation graphs, i.e., data structures using optimal space up to lower order terms. Unlike concurrent work on circle graphs (Acan et al. 2022), our data structure also supports distance and shortest-path queries, as well as adjacency and neighborhood queries, all in optimal time. We present in particular the first succinct exact distance oracle for (circular) permutation graphs. A second succinct data structure also supports degree queries in time independent of the neighborhood's size at the expense of an $O(\log n/\log \log n)$-factor overhead in all running times. Furthermore, we develop a succinct data structure for the class of bipartite permutation graphs. We demonstrate how to run algorithms directly over our succinct representations for several problems on permutation graphs: Clique, Coloring, Independent Set, Hamiltonian Cycle, All-Pair Shortest Paths, and others. Finally, we initiate the study of semi-distributed graph representations; a concept that smoothly interpolates between distributed (labeling schemes) and centralized (standard data structures). We show how to turn some of our data structures into semi-distributed representations by storing only $O(n)$ bits of additional global information, circumventing the lower bound on distance labeling schemes for permutation graphs.
翻译:我们为变换图提供了简洁的数据结构,以及圆形变换图的超级分类,即使用最优空间到更低顺序条件的数据结构。不同于同时在圆形图上的工作(Acan等人,2022年),我们的数据结构还支持了距离和最短路径查询,以及相邻和邻区查询,所有时间都是最理想的。我们特别为(圆形)变换图提供了第一个简洁的准确距离或触角图。第二个简洁的数据结构还支持在独立于邻居大小的时间进行程度查询,而在所有运行时间以美元(log n/log n/log n) 美元为基点管理。此外,我们为双面变换图的类别开发了一个简洁的数据结构。我们展示了如何直接在简洁的表达中进行算法,解决了(criquencion, Colorning,Setripleian Cirects) 和其他问题。最后,我们开始研究半分解的平面图图图图图式图式图式图式图式(Bitledal-dalationalationalation n n nn) roadalationalational dalationalationalation grational grational 结构,我们之间如何在标准化数据结构之间分配数据结构之间,我们只是化了一种结构。