Quantum annealing is a novel type of analog computation that aims to use quantum mechanical fluctuations to search for optimal solutions of Ising problems. Quantum annealing in the transverse field Ising model, implemented on D-Wave devices, works by applying a time dependent transverse field, which puts all qubits into a uniform state of superposition, and then applying a Hamiltonian over time which describes a user programmed Ising problem. We present a method which utilizes two control features of D-Wave quantum annealers, reverse annealing and an h-gain schedule, to quantify the susceptibility, or the distance, between two classical states of an Ising problem. The starting state is encoded using reverse annealing, and the second state is encoded on the linear terms of problem Hamiltonian. An h-gain schedule is specified which incrementally increases the strength of the linear terms, thus allowing a quantification of the h-gain strength required to transition the anneal into a specific state at the final measurement. By the nature of quantum annealing, the state tends towards global minima and therefore we restrict the second classical state to a minimum solution of the given Ising problem. This susceptibility mapping, when enumerated across all initial states, shows in detail the behavior of the quantum annealer during reverse annealing. The procedure is experimentally demonstrated on three small test Ising's which were embedded in parallel on the D-Wave Advantage_system4.1. Analysis of the state transition mapping shows detailed characteristics of the reverse annealing process including intermediate state transition paths, which are visually represented as state transition networks.


翻译:Quantum annealing 是一种新型的模拟计算方法, 目的是使用量子机械波动来寻找Ising 问题的最佳解决方案。 在D- Wave 设备上实施的横向Ising 模型中, 量子脉冲在横向字段中进行, 通过应用一个时间依赖的横向字段, 将所有qubit 都置于统一的叠加状态, 然后在一段时间里应用一个汉密尔顿仪来描述用户编程的Ising 问题。 我们展示了一种方法, 这种方法使用D- Wave 量子射线器的两个控制特性, 逆射线和增益时间表, 来量化Ising 问题的两个典型状态之间的易感性或距离。 起始状态使用逆向的反射线进行编码, 而第二个状态则根据问题线性术语编码。 计算出线性术语的强度, 从而可以量化将 annealal analian anal anneal anal anneal an adal an an an an trainal an an an trainal prial prial prial passess, lating the prient requistration lating the sal requist latingal laction laction laction lactions in the cal dal dal lax lautal lautal disal lautal ex lautmental latal lautmental latingal lautmental lautmental laut lators 在最后测量度, 在最后测量测算中, 度中, 3 一种小缩算算算算算算出一个小缩算中, 这个状态, 这个状态的缩算方法显示了整个一个最小缩算方法显示了整个中显示了整个, 直序的缩图显示了整个的缩图的缩算方法, 直为一种最小缩算方法, 直径的缩缩缩算方法显示了整个的缩图, 直序图的缩图的缩图的缩缩图的缩图的缩图是所有的缩缩缩图的缩图的缩图的缩图的缩图的缩图,

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月19日
Arxiv
0+阅读 · 2022年12月16日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员