Assigning items to owners is a common problem found in various real-world applications, for example, audience-channel matching in marketing campaigns, borrower-lender matching in loan management, and shopper-merchant matching in e-commerce. Given an objective and multiple constraints, an assignment problem can be formulated as a constrained optimization problem. Such assignment problems are usually NP-hard, so when the number of items or the number of owners is large, solving for exact solutions becomes challenging. In this paper, we are interested in solving constrained assignment problems with hundreds of millions of items. Thus, with just tens of owners, the number of decision variables is at billion-scale. This scale is usually seen in the internet industry, which makes decisions for large groups of users. We relax the possible integer constraint, and formulate a general optimization problem that covers commonly seen assignment problems. Its objective function is convex. Its constraints are either linear, or convex and separable by items. We study to solve our generalized assignment problems in the Bregman Alternating Direction Method of Multipliers (BADMM) framework where we exploit Bregman divergence to transform the Augmented Lagrangian into a separable form, and solve many subproblems in parallel. The entire solution can thus be implemented using a MapReduce-style distributed computation framework. We present experiment results on both synthetic and real-world datasets to verify its accuracy and scalability.
翻译:在各种现实应用中,将项目分配给业主是一个常见的问题,例如,在各种现实应用中,将项目分配给业主是一个常见的问题,例如,在营销运动中将受众-渠道匹配,在贷款管理中将借贷者-借贷者匹配,在电子商务中将垃圾-机械-机械匹配。在客观和多重制约下,分配问题可以被视为一个限制优化的问题。这种分配问题通常是NP-硬的,因此,当项目数量或所有者数量很大时,解决确切的解决办法就会变得具有挑战性。在本文件中,我们有兴趣解决有数亿项物品的有限分配问题。因此,只要有几十个业主,决策变量的数量就达到10亿规模。这种规模通常在互联网行业中看到,这为大量用户提供了决定。我们放松了可能的整数限制,并形成了一个包含常见的指派问题的一般性优化问题。其目标功能是共和的。其制约要么是线性,要么是连接的,要么是精确的,要么是难以解决的。我们研究如何解决我们在Bregman 合成多相联公司(BADMM) 中的普遍分配指导方法问题,因此,我们利用Bregleman 的准确性校准的校正的校正的校正的校正的校正,从而将一个模型的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正,可以改变成。