We propose a Doppler velocity-based cluster and velocity estimation algorithm based on the characteristics of FMCW LiDAR which achieves highly accurate, single-scan, and real-time motion state detection and velocity estimation. We prove the continuity of the Doppler velocity on the same object. Based on this principle, we achieve the distinction between moving objects and stationary background via region growing clustering algorithm. The obtained stationary background will be used to estimate the velocity of the FMCW LiDAR by the least-squares method. Then we estimate the velocity of the moving objects using the estimated LiDAR velocity and the Doppler velocity of moving objects obtained by clustering. To ensure real-time processing, we set the appropriate least-squares parameters. Meanwhile, to verify the effectiveness of the algorithm, we create the FMCW LiDAR model on the autonomous driving simulation platform CARLA for spawning data. The results show that our algorithm can process at least a 4.5million points and estimate the velocity of 150 moving objects per second under the arithmetic power of the Ryzen 3600x CPU, with a motion state detection accuracy of over 99% and estimated velocity accuracy of 0.1 m/s.
翻译:我们根据FMCW LiDAR的特性提出多普勒速度基于速度的集束和速度估算算法,该算法实现高度精确、单扫描和实时运动状态探测和速度估计。我们证明多普勒速度在同一天上的连续性。根据这一原则,我们通过区域增长集成算法,对移动物体和固定背景加以区分。获得的固定背景将用来用最小平方法估计调频CWLDAR的速度。然后,我们用估计的LIDAR速度和通过集束获得的移动物体的多普勒速度来估计移动物体的速度。为了确保实时处理,我们设置了适当的最小方参数。同时,为了核实算法的有效性,我们在自动驾驶模拟平台CARLA为产卵数据创建了调频CWCLAR模型。结果显示,我们的算法可以处理至少450万个点,并估计在Ryzen 3600x CPU的算力下每秒150个移动物体的速度。我们设定了最起码的精确度,并估计了99 mx速度。