项目名称: 生物特征识别中高维数据的统计降维及算法研究
项目编号: No.11261068
项目类型: 地区科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 王顺芳
作者单位: 云南大学
项目金额: 50万元
中文摘要: 在生物特征识别中,生物数据的维数往往非常之高,例如庞大的基因表达数据和人脸图像数据,这类数据的统计分析和降维是生物特征识别的关键技术,也是当前高维数据研究的国际前沿课题,现有降维方法的一个难点是不能针对具体的实际问题确定寻找低维结构的准则。在我们前期工作基于基因信息提取的交互熵信息收益方法以及基于人脸识别的小样本BOOTSTRAP PCA降维技术的基础上,本项目拟系统研究生物特征识别这一实际问题中高维数据降维的前沿统计方法和算法:带异常干扰线性生物数据的稳健降维及算法;非线性生物数据的基于核估计的稳健降维及算法;模糊生物特征数据的统计降维及算法;核模糊主成分分析和核模糊判别分析的降维及算法;以及生物特征识别中,评价各种统计降维算法的性能的统计推断方法。预期得到在生物特征识别中可处理各种复杂高维数据的较系统的新算法,进一步提高降维算法的稳健性和识别率。
中文关键词: 降维;核估计;模糊隶属;稳健性;生物特征识别
英文摘要: In biometric recognition technology, biological data often have high dimensionality, such as large gene expression data and facial image data. The statistical analysis and dimention reduction on the data is a key technology in biometric recognition, and also is the international advanced research. It is difficult to identify the rules of how to find the low dimentional structure for specific practical problems by using the existing methods of dimensionality reduction. On the basis of our previous two work of the gene information extraction by the entropy-based interaction information gain and the dimensional reduction technique in facial recognition with small sample BOOTSTRAP PCA, this project aims to systematically study the advanced statistical methods and algorithms for high dimentionality reduction in biometric recognition. They are: robust dimensional reduction and the corresponding algorithms for linear biological data with abnormal ones; robust dimensional reduction and the corresponding algorithms for nonlinear biological data based on kernel estimation; statistical dimensionality reduction and the corresponding algorithms for fuzzy biometric data; fuzzy kernel principal component analysis and fuzzy kernel discriminant analysis methods for dimensionality reduction and the corresponding algorithms; and
英文关键词: dimensionality reduction;kernel estimation;fuzzy membership;robustness;biometric recognition