States of open quantum systems usually decay continuously under environmental interactions. Quantum Markov semigroups model such processes in dissipative environments. It is known that a finite-dimensional quantum Markov semigroup with detailed balance induces exponential decay toward a subspace of invariant or fully decayed states, under what are called modified logarithmic Sobolev inequalities. We analyze continuous processes that combine coherent and stochastic processes, breaking detailed balance. We find counterexamples to analogous decay bounds for these processes. Through analogs of the quantum Zeno effect, noise can suppress interactions that would spread it. Faster decay of a subsystem may thereby slow overall decay. Hence the relationship between the strength of noise on a part and induced decay on the whole system is often non-monotonic. We observe this interplay numerically and its discrete analog experimentally on IBM Q systems. Our main results then explain and generalize the phenomenon theoretically. In contrast, we also lower bound decay rates above any given timescale by combining estimates for simpler, effective processes across times.
翻译:开放量子系统的状态通常在环境相互作用下不断衰减。 Quantum Markov 半组在消散环境中模拟这种过程。 众所周知, 具有详细平衡的有限维量 Markov 半组在所谓的修改对数和随机偏差的不平等之下,会向无变化状态或完全衰减状态的子空间加速衰减。 我们分析了这些过程的连续过程,这些过程结合了连贯和随机的过程,打破了详细的平衡。 我们发现了类似的衰变界限的反抽样。 通过量子Zeno效应的类比, 噪音可以抑制会扩散它的相互作用。 一个子的加速衰减可能会减缓整体衰减。 因此, 部分噪音的强度和整个系统诱发衰变之间的关系往往是非分子化的。 我们在IBM Q 系统中用数字观察这种相互作用及其离子模拟的实验性。 我们的主要结果然后从理论上解释并概括了这个现象。 相比之下, 我们还通过合并对更简单、有效的过程的估算, 将约束衰减率比任何给定的时间尺度要低。