In this paper, we provide a rigorous formulation of the so-called flight-pause model for human mobility, represented by a collection of random objects we call motions. We provide both the likelihood function corresponding to the general model and a special case we term the standard parameterization. We show how inference on unknown model parameters can be obtained using mobile phone tracking (MPT) data observed at regular time intervals. Since MPT data is frequently incomplete due to operating errors or battery-conservation considerations, we develop the statistical machinery needed to make inferences on model parameters and impute gaps in an observed mobility trajectory under various data collection mechanisms. We show an unusual missing-data scenario that arises in this setting, namely that there is not a one-to-one correspondence between assumptions about the missing data mechanism giving rise to MPT observations and those about the missing data mechanism for the random motions underlying the flight pause model. Thus, the methodology offers a contribution to the literature on missing data under modern measurement technologies. Through a series of simulation studies and a real data illustration, we demonstrate the consequences of missing data and our proposed adjustments under different data collection mechanisms, outlining implications for MPT data collection design.
翻译:在本文中,我们以我们称为动议的随机物体的收集形式,对所谓的人类流动飞行暂停模型进行了严格的阐述;我们提供了与一般模型相对应的可能功能和我们称之为标准参数化的特殊案例;我们展示了如何利用定期观察的移动电话跟踪(MPT)数据获得未知模型参数的推断;由于运行错误或电池保护考虑,MPT数据往往不全,因此我们开发了必要的统计机制,以便在各种数据收集机制下对模型参数作出推论,并渗透到观察到的流动轨迹中的差距;我们展示了在这一背景下出现的一种异常缺失数据情景,即对引起MPT观测的缺失数据机制的假设与对飞行暂停模型随机动议的缺失数据机制的假设之间没有一对一的对应,因此,该方法有助于根据现代测量技术对缺失数据的文献作出贡献;通过一系列模拟研究和真实数据说明,我们展示了缺失数据的后果以及在不同数据收集机制下的拟议调整,概述了MPT数据收集设计的影响。