Model generalization of the underlying dynamics is critical for achieving data efficiency when learning for robot control. This paper proposes a novel approach for learning dynamics leveraging the symmetry in the underlying robotic system, which allows for robust extrapolation from fewer samples. Existing frameworks that represent all data in vector space fail to consider the structured information of the robot, such as leg symmetry, rotational symmetry, and physics invariance. As a result, these schemes require vast amounts of training data to learn the system's redundant elements because they are learned independently. Instead, we propose considering the geometric prior by representing the system in symmetrical object groups and designing neural network architecture to assess invariance and equivariance between the objects. Finally, we demonstrate the effectiveness of our approach by comparing the generalization to unseen data of the proposed model and the existing models. We also implement a controller of a climbing robot based on learned inverse dynamics models. The results show that our method generates accurate control inputs that help the robot reach the desired state while requiring less training data than existing methods.
翻译:模型化基本动态对于在学习机器人控制时实现数据效率至关重要。 本文提出一种新的学习动态方法, 利用基础机器人系统中的对称性, 从而能够从较少的样本中进行有力的外推。 代表矢量空间中所有数据的现有框架没有考虑到机器人的结构化信息, 如腿对称、 旋转对称和物理变化。 因此, 这些计划需要大量的培训数据来学习系统冗余元素, 因为它们是独立学习的。 相反, 我们提议先考虑几何方法, 在对称对象组中代表系统, 并设计神经网络结构, 以评估天体之间的不一致性和不均匀性。 最后, 我们通过比较所拟议的模型和现有模型的不可见数据, 来显示我们的方法的有效性。 我们还根据所学的反向动态模型, 对攀升机器人实施控制器。 结果显示, 我们的方法产生精确的控制投入, 帮助机器人到达理想状态, 同时比现有方法需要更少的培训数据。