We study codes with parameters of the ternary Hamming $(n,3^{n-m},3)$ code, i.e., ternary $1$-perfect codes. The rank of the code is defined as the dimension of its affine span. We characterize ternary $1$-perfect codes of rank $n-m+1$, count their number, and prove that all such codes can be obtained from each other by a sequence of two-coordinate switchings. We enumerate ternary $1$-perfect codes of length $13$ obtained by concatenation from codes of lengths $9$ and $4$; we find that there are $93241327$ equivalence classes of such codes. Keywords: perfect codes, ternary codes, concatenation.
翻译:我们研究具有永恒假币代码参数的代码,即永恒1美元完美代码,该代码的等级被定义为其直角的维度。我们确定美元+1美元的永久有效代码,计数其数量,并证明所有此类代码都可以通过一系列双坐标转换从对方获得。我们从长度代码中列出以9美元和4美元相配方式获得的长13美元的永久有效代码;我们发现此类代码有93241327美元的等值类。关键词:完美代码、永恒代码、配对代码。