Certain neural network architectures, in the infinite-layer limit, lead to systems of nonlinear differential equations. Motivated by this idea, we develop a framework for analyzing time signals based on non-autonomous dynamical equations. We view the time signal as a forcing function for a dynamical system that governs a time-evolving hidden variable. As in equation discovery, the dynamical system is represented using a dictionary of functions and the coefficients are learned from data. This framework is applied to the time signal classification problem. We show how gradients can be efficiently computed using the adjoint method, and we apply methods from dynamical systems to establish stability of the classifier. Through a variety of experiments, on both synthetic and real datasets, we show that the proposed method uses orders of magnitude fewer parameters than competing methods, while achieving comparable accuracy. We created the synthetic datasets using dynamical systems of increasing complexity; though the ground truth vector fields are often polynomials, we find consistently that a Fourier dictionary yields the best results. We also demonstrate how the proposed method yields graphical interpretability in the form of phase portraits.
翻译:某些神经网络结构, 在无限范围内, 导致非线性差异方程式的系统。 我们受这个想法的启发, 开发一个基于非自动动态方程式的时间信号分析框架。 我们把时间信号视为一个动态系统的强制功能, 这个动态系统管理着一个时间变化的隐藏变量。 就像方程式发现一样, 动态系统代表着一个函数字典, 从数据中学习系数。 这个框架适用于时间信号分类问题 。 我们用联合方法来显示梯度如何有效计算, 我们用动态系统的方法来建立分类器的稳定。 我们通过在合成和真实数据集上进行的各种实验, 显示拟议方法使用数量级的顺序比相竞方法少, 同时达到可比的准确性。 我们用动态系统创建合成数据集, 复杂程度越来越高; 尽管地面真理矢量字段往往是多式的, 我们始终发现一个四倍数的词典产生最佳结果 。 我们还展示了拟议方法如何在阶段肖像形式上产生图形可解释性 。