Bayesian inference for nonlinear diffusions, observed at discrete times, is a challenging task that has prompted the development of a number of algorithms, mainly within the computational statistics community. We propose a new direction, and accompanying methodology, borrowing ideas from statistical physics and computational chemistry, for inferring the posterior distribution of latent diffusion paths and model parameters, given observations of the process. Joint configurations of the underlying process noise and of parameters, mapping onto diffusion paths consistent with observations, form an implicitly defined manifold. Then, by making use of a constrained Hamiltonian Monte Carlo algorithm on the embedded manifold, we are able to perform computationally efficient inference for an extensive class of discretely observed diffusion models. Critically, in contrast with other approaches proposed in the literature, our methodology is highly automated, requiring minimal user intervention and applying alike in a range of settings, including: elliptic or hypo-elliptic systems; observations with or without noise; linear or non-linear observation operators. Exploiting Markovianity, we propose a variant of the method with complexity that scales linearly in the resolution of path discretisation and the number of observation times.
翻译:在离散时观测的非线性扩散的贝叶斯推论是一项艰巨的任务,它促使主要在计算统计界内部开发一系列算法。我们提出了一个新的方向和配套方法,从统计物理和计算化学中借用思想,根据对过程的观察,推断潜在扩散路径和模型参数的后方分布; 潜在过程噪音和参数的联合配置,根据观测结果绘制在扩散路径上的图,形成一个隐含定义的多元。然后,通过在嵌入的元体上使用一个受限制的汉密尔顿·蒙特·卡洛算法,我们能够对大量离散观测的传播模型进行高效的计算推论。与文献中提议的其他方法相比,我们的方法非常自动化,需要最低限度的用户干预,并在一系列环境中应用同样的方法,包括:椭圆或低电离子系统;与或不与噪音有关的观测;线性或非线性观测操作员。探索Markovian,我们提出了一种方法的变式,该方法在解路分解和观察次数方面具有线性的复杂性。