We consider stochastic zeroth-order optimization over Riemannian submanifolds embedded in Euclidean space, where the task is to solve Riemannian optimization problem with only noisy objective function evaluations. Towards this, our main contribution is to propose estimators of the Riemannian gradient and Hessian from noisy objective function evaluations, based on a Riemannian version of the Gaussian smoothing technique. The proposed estimators overcome the difficulty of the non-linearity of the manifold constraint and the issues that arise in using Euclidean Gaussian smoothing techniques when the function is defined only over the manifold. We use the proposed estimators to solve Riemannian optimization problems in the following settings for the objective function: (i) stochastic and gradient-Lipschitz (in both nonconvex and geodesic convex settings), (ii) sum of gradient-Lipschitz and non-smooth functions, and (iii) Hessian-Lipschitz. For these settings, we analyze the oracle complexity of our algorithms to obtain appropriately defined notions of $\epsilon$-stationary point or $\epsilon$-approximate local minimizer. Notably, our complexities are independent of the dimension of the ambient Euclidean space and depend only on the intrinsic dimension of the manifold under consideration. We demonstrate the applicability of our algorithms by simulation results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.
翻译:我们考虑对嵌入于Euclidean空间的里曼尼亚基平面进行零和分级优化。 在那里,我们的任务是解决里曼尼优化问题,只进行噪音客观功能评估。 为此,我们的主要贡献是提出里曼尼梯度和赫森根据高斯平滑技术的里曼式高尔夫式平滑技术的噪音客观功能评估来估计里曼梯度和赫森; 提议的测算器克服了多种制约的非线性的困难,以及使用欧克利德南高斯平滑技术时产生的问题。 当函数仅由电流决定时,我们的任务就是解决里曼性优化问题,为此目标功能: (i) 沙克和梯度-利普森特(在高斯平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, (iii) Hesian-Lipschitz 应用的平面平面平面平面平面平面平面平面平面平面技术。 对于这些设置, 我们分析了内部平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,我们平面平面平面平面平面平面平面平面平面平面平面平面平面,我们平面平面平面平面,我们平面平面平面,我们平面平面平面平面平面平面平面平面,我们平面平面平面平面平面平面平面平面平面平面平面平面平面平面,我们平面平面平面平面平面平面平面,我们平面平面平面平面平面平面平面,我们平面平面平面平面平面平面平面平面平面平面平面平面,我们平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面