We present a wavelet-based adaptive method for computing 3D multiscale flows in complex, time-dependent geometries, implemented on massively parallel computers. While our focus is on simulations of flapping insects, it can be used for other flow problems, including turbulence, as well. The incompressible fluid is modeled with an artificial compressibility approach in order to avoid solving elliptical problems. No-slip and in/outflow boundary conditions are imposed using volume penalization. The governing equations are discretized on a locally uniform Cartesian grid with centered finite differences, and integrated in time with a Runge--Kutta scheme, both of 4th order. The domain is partitioned into cubic blocks with equidistant grids with different resolution and, for each block, biorthogonal interpolating wavelets are used as refinement indicators and prediction operators. Thresholding the wavelet coefficients allows to generate dynamically evolving grids, and an adaption strategy tracks the solution in both space and scale. Blocks are distributed among MPI processes and the global topology of the grid is encoded using a tree-like data structure. Analyzing the different physical and numerical parameters allows balancing their individual error contributions and thus ensures optimal convergence while minimizing computational effort. Different validation tests score accuracy and performance of our new open source code, WABBIT (Wavelet Adaptive Block-Based solver for Interactions with Turbulence), on massively parallel computers using fully adaptive grids. Flow simulations of flapping insects demonstrate its applicability to complex, bio-inspired problems.


翻译:我们展示了一种基于波浪的适应方法,用于计算复杂、时间依赖型的复杂、基于时间的多比例流,在大量平行计算机上实施。 虽然我们的重点是模拟拍击昆虫的模拟, 但它也可以用于其他流程问题, 包括动荡。 压抑性流用人工压缩法建模, 以避免解决椭圆问题。 使用量的处罚, 强制使用无滑动和内/外流边界条件。 治理方程式分解于一个地方统一的卡尔特斯电网, 并具有核心的有限差异, 并及时与Runge- Kutta 计划相结合, 两者都是第4级的。 域用等离异的电网分割成立方块, 包括不同分辨率的平流。 每个区块, 双向的间流波流波波流波流波流波流波流都用作完善的指标和预测操作者。 支撑波流系数系数可以产生动态变化的电网格, 以及空间和规模的调整战略跟踪解决方案。 块分布在MPI的流程流程中, 以及全球电网顶端的系统将使用不同的流流- Kutobilal- dal- dalal dal- dealalalal dalal dal disal dism dal 测试, 度的精确度的计算, 并用不同的计算方法, 并用不同的计算结果的精确度测试了我们不同的计算。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年3月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员